. I R 92 SA ST 2

— — SAS Functions

NG | IR SASE AT
&



' Contents

' Character

. Numeric

' Date and time
@ Statistics

' Probability

' Others

B\ dosecimsit SHimsmRas 2 AR SESAS R



' Character

' Contents

» Introduction to working with character variables

» [nput SAS data set for examples

» |dentifying character variables and expressing character values
» Setting the length of character variables

» Handling missing values

» Creating new character values

» More property

-

B _,a SR SRR AL ; PR TS SAS A SRR
\&



Introduction to Working with Character Variables (1)

# Obijectives

» |n this section, you will learn how to do the following:
identify character variables

set the length of character variables

align character values within character variables
handle missing values of character variables

work with character variables, character constants, and character expressions in
SAS program statements

[ instruct SAS to read fields that contain numbers as character variables in order
to save space

B 13) I SKEEERAS : ISERFSESAS B R
\&



‘ Introduction to Working with Character Variables (2)

g A character variable is a variable whose value contains
letters, numbers, and special characters, and whose length
can be from 1 to 32,767 characters long. Character
variables can be used in declarative statements,
comparison statements, or assignment statements where
they can be manipulated to create new character variables.

-

3N dEE g SRR A 5 RS SAS S



Input SAS Data Set for Examples

' Example:

Data departures;
Input Country $1-9 CitisIntour 11-12 USGate $ 14-26
ArrivalDepartureGates $28-48;

Datalines;

Japan 5 San Francisco Tokyo,Osaka
Italy 8 New York Rome, Naples
Australia 12 Honolulu Sydney, Brisbane;

Proc print data=departures;

Title ‘Data Set DEPARTURES’ : In this dataset, which variable must be

Run; .
stored as character variables?
Output:
Data Set AIR.DEPARTURES 1
Cities

Obs Country InTour USGate ArrivalDepartureGates

1 Japan 5 San Francisco Tokyo, Osaka

2 Italy 8 New York Rome, Naples

3 BAustralia 12 Honolulu Sydney, Brisbane .

B PR IS SEIEEER AR 6 RS ISASE R

&



ldentifying Character Variables and Expressing
Character Values (1)

‘ How to create a character variable:

» Define it in an INPUT statement
[ Example: input Country $1-9:

» Create a character variable and assign a value to it in an
assignment statement. Simply enclose the value in quotation marks:

[ Example: Schedule='3-4 tours per person’;

» Either single quotation marks (apostrophes) or double quotation
marks are acceptable. If the value itself contains a single quote, then
surround the value with double quotation marks , as in

[ Example: Remarks =“See last year's schedule”;

[ Note: Matching quotation marks properly is important. Missing or extraneous
guotation marks cause SAS to misread both the erroneous statement and the
statements following it.

B\ Itsengst SEm A 7 SRS SAS I RS

BA Selins etometric Azsoctacion



ldentifying Character Variables and Expressing
Character Values (2)

8 Character variable property:

» \When specifying a character value in an expression, you must
also enclose the value in quotation marks.

[ Example: if USGate = ’San Francisco’ then Airport = ’SFO’;
» In character values, SAS distinguishes uppercase letters from
lowercase letters.

[ Example: if USGate = "Honolulu’ then Airport = "HNL’;

IS not same with the following statement

if USGate = '"HONOLULU'’ then Airport = "HNL';

ccccccccccccccccc

) AT SR A 8 RS SAS S



Identifying Character Variables and Expressing
Character Values (3)

‘ The NOOBS option in the PROC PRINT statement suppresses the display
of observation numbers in the output.
» Example:
Data departures;

Input Country $1-9 CitiesIntour 11-12 USGate $ 14-26
ArrivalDepartureGates $28-48;

Datalines;

Japan 5 San Francisco Tokyo,Osaka

Italy 8 New York Rome, Naples
Australia 12 Honolulu Sydney, Brisbane;

Proc print data=departures noobs;
Title ‘Data Set DEPARTURES’ ;
Run;

B P} SR SRR AL 9 PR TS SAS A SRR
\&



Identifying Character Variables and Expressing
Character Values (4)

' Output

Tours By City of Departure 1
Country Schedule Remarks USGate Airport
Japan 3-4 tours per season See last year's schedule San Francisco SFO
Italy 3-4 tours per season See last year’'s schedule New York
Australia 3-4 tours per season See last year’'s schedule Honolulu HNL

-

B Q G SHEEER A 10 IS BRRSESASE B2
\&



‘ Setting the Length of Character Variables (1)

(& How SAS assigns lengths to character variables

» If SAS cannot determine a length for a character variable: 8 bytes

» The first value for a SAS character variable determines the
variable’s length.

» LENGTH statement: before any other reference to the variable in
the DATA step

[ A later use of the LENGTH statement will not change its size.

# Reducing the length of character data with the LENGTH
statement

B P} I SRR AR 1 ISR A IR
\&



Setting the Length of Character Variables (2)

0 Example:

data aircode;
set mylib.departures;

if USGate = ’'San Francisco’ then Airport = ’'SFO’;
else if USGate = 'Honolulu’ then Airport = ’'HNL’;
else if USGate = 'New York’ then Airport = ’'JFK or LGA'’;

run;
proc print data=aircode;

var Country USGate Airport;

title 'Country by US Point of Departure’;

run,

SAS listing output:

Country by US Point of Departure 1
Obs Country USGate Airport
1 Japan San Francisco SFO
2 Italy New York JFK
3 Australia Honolulu HNL
B P} TSt SRR AL 1 VPR SISASER AT
) eijing iometric Association

&



‘ Setting the Length of Character Variables (3)

Only the characters JFK appear in the observation for New York.
SAS first encounters Airport in the statement that assigns the value
SFO. Therefore, SAS creates Airport with a length of three bytes and
uses only the first three characters in the New York observation.

To allow space to write JFK or LGA, use a LENGTH statement as
the first reference to Airport. The LENGTH statement is a declarative
statement and has the form

LENGTH variable-list $ number-of-bytes;

-

B P} I SRR AR 13 ISR A IR
\&



' Handling Missing Values (1)

o Reading missing values:
» Example:

data missingval;
length Country $ 10 TourGuide $ 10;
input Country TourGuide;
datalines;
Japan Yamada
Italy Militello
Australia Edney
Venezuela
Brazil Cardoso
proc print data=missingval;
title 'Missing Values for Character List Input Data’;
run;

B _,% SR SRR AL 14 PR TS SAS A SRR
\&



‘ Handling Missing Values (2)

SAS Listing output:

Missing Values for Character List Data 1
Obs Country TourGuide
1 Japan Yamada
2 Italy Militello
3 Australia Edney
4 Venezuela
5 Brazil Cardoso

SAS recognized the period as a missing value in the fourth data line; therefore,
It recorded a missing value for the character variable TourGuide in the resulting
data set.

B _BR G SHEEER A 15 IS BRATSESAS A RATE
\&



‘ Handling Missing Values (3)

8 Checking for missing character values

» \When you want to check for missing character values, compare the
character variable to a blank surrounded by quotation marks:
[ Example: if USGate =’ then Gatelnformation = 'Missing’;

8 Setting a character variable value to missing

» YOou can assign missing character values in assignment
statements by setting the character variable to a blank surrounded by

guotation marks.

[ For example, the following statement sets the day of departure based
on the number of days in the tour. If the number of cities in the tour is
a week or less, then the day of departure is a Sunday. Otherwise, the
day of departure is not known and is set to a missing value.

B 13} I SRR AR 16 ISR A IR
\&



' Handling Missing Values (4)

' Example:

data departuredays;
set mylib.departures;
length DayOfDeparture $ 8;
if CitiesInTour <=7 then DayOfDeparture = ’'Sunday’;
else DayOfDeparture = ' ’';
run;
proc print data=departuredays;
var Country CitiesInTour DayOfDeparture;
title ’'Departure Day is Sunday or Missing’;
run;

B Q SR SRR AL 17 PR TS SAS A SRR
\&



‘ Handling Missing Values (5)

SAS lisiting output:

Departure Day is Sunday or Missing 1
Cities DayOf
Obs Country InTour Departure
1 Japan 5 Sunday
2 Italy 8
3 Bustralia 12
4 Venezuela 4 Sunday

By ) domisnmemnas
\&

18

-

R ST SAS S R 4mTE



‘ Creating New Character Values (1)

# Creating new character values

» The SCAN function returns a character string when it is given the source
string, the position of the desired character string, and a character delimiter:

SCAN (source,n<,list-of-delimiters>)
» The LEFT function produces a value that has all leading blanks in the
source moved to the right side of the value; therefore, the result is left
aligned. The source can be any kind of character expression, including a

character variable, a character constant enclosed in quotation marks, or
another character function.

LEFT (source)

B ?} SR SRR AL 19 PR TS SAS A SRR
\&



‘ Creating New Character Values (2)

[ Exanuﬂe:ArrivalGate = scan(ArrivalDepartureGates,1l,’,’);

[ Example:
DepartureGate = 1left(scan(ArrivalDepartureGates,2,’,’));
OUtpUt:
Arrival and Departure Gates 1
Departure
Obs Country ArrivalDepartureGates ArrivalGate Gate
1 Japan Tokyo, Osaka Tokyo Osaka
2 Ttaly Rome, Naples Rome Naples
3 Australia Syvdney, Brisbane Sydney Brisbane
4 Venezuela Caracas, Maracaibo Caracas Maracaibo
5 Brazil Rio de Janeiro, Belem Rio de Janeiro Belem
B _BR IS SEREER AR 20 ISR SASE AT

&



‘ Creating New Character Values (3)

(& Saving storage space when using the SCAN function

» The SCAN function causes SAS to assign a length of 200 bytes to
the target variable in an assignment statement. Most of the other
character functions cause the target to have the same length as the
original value.

B P} I SRR AR 2 ISR A IR
\&



' Creating New Character Values (4)

Example:
data gatelength;
length ArrivalGate $ 14 DepartureGate $ 9;
set mylib.departures;

ArrivalGate = scan (ArrivalDepartureGate,l,’,’);

DepartureGate = left(scan(ArrivalDepartureGate,2,’,’));

run,

Note:

» |n the data set GATELENGTH, the variable ArrivalGate has a length of 200
because the SCAN function creates it. The variable DepartureGate also has a length
of 200 because the argument of the LEFT function contains the SCAN function.

» Setting the lengths of ArrivalGate and DepartureGate to the needed values rather
than to the default length saves a lot of storage space. Because SAS sets the length
of a character variable the first time SAS encounters it, the LENGTH statement must
appear before the assignment statements that create values for the variables.

<=

B PR SR SRR AL 2 PR TS SAS A SRR
\&



‘ Combining Character Values: Using Concatenation (1)

8 Understanding concatenation of variable values

» Concatenation combines character values by placing them one
after the other and assigning them to a variable. The length of the
new variable is the sum of the lengths of the pieces or number of
characters that is specified in a LENGTH statement for the new
variable.

ccccccccccccccccc

) AT SR A 2 RS SAS S



Combining Character Values: Using Concatenation (2)

[ Example: AllGates = USGate || ArrivalDepartureGates;

All Tour Gates 1

Obs Country USGate ArrivalDepartureGates

1 Japan San Francisco Tokyo, Osaka

2 Italy New York Rome, Naples

3 Australia Honolulu Sydney, Brisbane

4 Venezuela Miami Caracas, Maracaibo

5 Brazil Rio de Janeiro, Belem
Obs AllGates

1 San FranciscoTokyo, Osaka

2 New York Rome, Naples

3 Honolulu @ Sydney, Brisbane

4 Miami Caracas, Maracaibo

5 (2] Rio de Janeiro, Belem

©® the middle of AllGates contain blanks?

® the beginning of AllGates in the Brazil observation contain blanks?

B _B/\\* RN SRR EER AL 2 IS BRATSESAS A RATE
\&



‘ Combining Character Values: Using Concatenation (3)

(& Performing a simple concatenation

» The following statement combines all the cities named as
gateways into a single variable named AllGates:

[ AllGates = USGate || ArrivalDepartureGates:
» SAS attaches the beginning of each value of
ArrivalDepartureGates to the end of each value of USGate and

assigns the results to AllGates. The following DATA step includes
this statement:

Bp )\ dSemsiit SuiR e s 2 RS SAS S



Combining Character Values: Using Concatenation (4)

# Example:
/* first try */
options pagesize=60 linesize=80 pageno=1 nodate;

data all;

set mylib.departures;

AllGates = USGate || ArrivalDepartureGates;
run;

proc print data=all;
var Country USGate ArrivalDepartureGates AllGates;

title "All Tour Gates’;

run,
B _,% SR SRR AL 26 PR TS SAS A SRR

&



Combining Character Values: Using Concatenation (5)

SAS output:

All Tour Gates 1

Obs Country USGate ArrivalDepartureGates

1 Japan San Francisco Tokyo, Osaka

2 Italy New York Rome, Naples

3 Australia Honolulu Sydney, Brisbane

4 Venezuela Miami Caracas, Maracaibo

5 Brazil Rio de Janeiro, Belem
Obs AllGates

1 San FranciscoTokyo, Osaka

2 New York Rome, Naples

3 Honolulu @ Sydney, Brisbane

4 Miami Caracas, Maracaibo

5 (2] Rio de Janeiro, Belem

@ the middle of AllGates contain blanks?

@ _the beginning of AllGates in the Brazil observation contain blanks?
B BA b SHIREER AR 27 MR BRI SAS B R 4mTE
&

ometric Assocliation



Combining Character Values: Using Concatenation (6)

' Removing interior blanks
» The TRIM function produces a value without the trailing blanks in
the source.
[ ExanuﬂeZAllGateZ = trim(USGate) || ArrivalDepartureGates;

The following program adds this statement to the DATA step:
/* removing interior blanks */
options pagesize=60 linesize=80 pageno=1 nodate;

data all2;

set mylib.departures;

AllGate2 = trim(USGate) || ArrivalDepartureGates;
run;

proc print data=all2;
var Country USGate ArrivalDepartureGates AllGate2;
title 'All Tour Gates’;

run;

B 13} SR SRR AL 28 PR TS SAS A SRR
\&



Combining Character Values: Using Concatenation (7)

SAS listing output

All Tour Gates 1
Obs Country USGate ArrivalDepartureGates AllGate2
1 Japan San Francisco Tokyo, Osaka San FranciscoTokyo, Osaka
2 Italy New York Rome, Naples New YorkRome, Naples
3 Australia Honolulu Sydney, Brisbane HonoluluSydney, Brisbane
4 Venezuela Miami Caracas, Maracaibo MiamiCaracas, Maracaibo
5 Brazil Rio de Janeiro, Belem Rio de Janeiro, Belem

Notice at @ that the AllGate2 value for Brazil has a blank space before Rio de
Janeiro, Belem. When the TRIM function encounters a missing value in the
argument, one blank space is returned. In this observation, USGate has a
missing value;

Bp A SR SRR AL 29 SR SASE TS
Bp dtsEmit SsEEERas



‘ Combining Character Values: Using Concatenation (8)

g Adding additional characters

» Data set ALL2 shows that removing the trailing blanks from
USGate causes all the values of ArrivalDepartureGates to appear
Immediately after the corresponding values of USGate. To make the
result easier to read, you can concatenate a comma and blank
between the trimmed value of USGate and the value of
ArrivalDepartureGates. Also, to align the AllGate3 value for Brazil
with all other values of AllGate3, use an IF-THEN statement to
equate the value of AllGate3 with the value of ArrivalDepartureGates
in that observation.

[ Example:

AllGate3 = trim(USGate)||’, ’||ArrivalDepartureGates;

if Country = 'Brazil’ then AllGate3 = ArrivalDepartureGates;
) :Il:“ét._%ﬁrl-'—:;‘m%ﬂﬁ £ 30 IEFR AT SASE R dntz

&



Combining Character Values: Using Concatenation (9)

' Example
/* final version */
options pagesize=60 linesize=80 pageno=1 nodate;

data all3;

set mylib.departures;

AllGate3 = trim(USGate) ||’ , ’'||ArrivalDepartureGates;

if Country = ’'Brazil’ then AllGate3 = ArrivalDepartureGates;
run;

proc print data=all3;
var Country USGate ArrivalDepartureGates AllGate3;
title 'All Tour Gates’;

run;

B _,a SR SRR AL d PR TS SAS A SRR
\&



Combining Character Values: Using Concatenation (10)

g Sas listing output

All Tour Gates 1

Obs Country USGate ArrivalDepartureGates Al1Gate3

1 Japan San Francisco Tokyo, Osaka San Francisco, Tokyo, 0Osaka

2 Italy New York Rome, Naples New York, Rome, Naples

3 Australia Honolulu Sydney, Brisbane Honolulu, Sydney, Brisbane

4 Venezuela Miami Caracas, Maracaibo Miami, Caracas, Maracaibo

5 Brazil Rio de Janeiro, Belem Rio de Janeiro, Belem

B\ dtRahit ShEemsas 2 R RSESASTE AT

&



‘ Combining Character Values: Using Concatenation (11)

# Troubleshooting: When new variables appear truncated

» \When concatenating variables, you might see the apparent loss of part of
a concatenated value. Earlier in this section, ArrivalDepartureGates was
divided into two new variables, ArrivalGate and DepartureGate, each with a
default length of 200 bytes. (Remember that when a variable is created by
an expression that uses the SCAN function, the variable length is 200 bytes.)
For reference, this example re-creates the DATA step:

B ?} SR SRR AL = PR TS SAS A SRR
\&



' Combining Character Values: Using Concatenation (12)

8 Example:

options pagesize=60 linesize=80 pageno=1 nodate;

data gates;
set mylib.departures;
ArrivalGate = scan (ArrivalDepartureGates,l,’,’);
DepartureGate = left(scan(ArrivalDepartureGates,2,’,’));

run,

Note: If the variables ArrivalGate and DepartureGate are concatenated, as they
are in the next DATA step, then the length of the resulting concatenation is 402
bytes: 200 bytes for each variable and 1 byte each for the comma and the
blank space. This example uses the VLENGTH function to show the length of
ADGates.

B\ dosecimsit SHimsmRas 4 PR SESAS B R 2
\&



Combining Character Values: Using Concatenation (13)

# Example:
/* accidentally omitting the TRIM function */
options pagesize=60 linesize=80 pageno=1 nodate;
data gates2;
set gates;
ADGates = ArrivalGate||’, ' | |DepartureGate; ;
ADLength = wvlength (ADGates) ;

run;

proc print data=gates2;
var Country ArrivalDepartureGates ADGates ADLength;
title 'All Tour Gates’;

run;

B _,a SR SRR AL 3 PR TS SAS A SRR
\&



Combining Character Values: Using Concatenation (14)

SAS listing output:

All Tour Gates 1

Obs Country ArrivalDepartureGates

1 Japan Tokyo, Osaka

2 Italy Rome, Naples

3 Australia Sydney, Brisbane

4 Venezuela Caracas, Maracaibo

5 Brazil Rio de Janeiro, Belem
Obs ADGates

1 Tokyo

2 Rome

3 Sydney

4 Caracas

5 Rio de Janeiro

Obs ADLength

402
402
402
402
402

U b b

B _]3%\\ IS SR EEER AR 35 s ER AR SESAS S it
\&



‘ Combining Character Values: Using Concatenation (15)

g The concatenated value from DepartureGate appears to
be truncated in the output.It has been concatenated after
the trailing blanks of ArrivalGate, and it does not appear
because the output does not display 402 bytes.

» The TRIM function can trim the trailing blanks from ArrivalGate, as
shown in the preceding section. The significant characters from all
three pieces that are assigned to ADGates can then fit in the output.

» The length of ADGates remains 402 bytes. The LENGTH
statement can assign to the variable a length that is shorter but large
enough to contain the significant pieces.

B 13} I SRR AR a7 ISR A IR



Combining Character Values: Using Concatenation (16)

o The following DATA step uses the TRIM function and the LENGTH

statement to remove interior blanks from the concatenation:
options pagesize=60 linesize=80 pageno=1 nodate;
data gates3;
length ADGates $ 30;
set gates;
ADGates = trim(ArrivalGate)||’, ' ||DepartureGate;
run;
proc print data=gates3;
var country ArrivalDepartureGates ADGates;
title 'All Tour Gates’;
run;

The following output displays the results:

B 13} SR SRR AL 38 PR TS SAS A SRR
\&



Combining Character Values: Using Concatenation (17)

Obs Country

Japan
Italy
Bustralia
Venezuela
Brazil

o W M

Bo\
&

N e

All Tour Gates
ArrivalDepartureGates

Tokyo, Osaka

Rome, Naples

Sydney, Brisbane
Caracas, Maracaibo
Rio de Janeiro, Belem

39

ADGates

Tokyo, Osaka

Rome, Naples

Sydney, Brisbane
Caracas, Maracaibo
Rio de Janeiro, Belem

R ST SAS S R 4mTE

-




‘ More Property (1)

# Character values: This section illustrates the flexibility that SAS
provides for manipulating character values. In addition to the functions
that are described in this section,
The following character functions are also frequently used:
» COMPBL
[ removes multiple blanks from a character string.

[ Example:
SAS Statements Results

PR, B S 2——

string='Hey
Diddle Diddle’;
string=compbl (string);
put string; Hey Diddle Diddle

string="'125 E Main St';

length address $10;

address=compbl (string);

put address; 125 E Main

B _B} ISR SHIERER AR 0 PR BSESAS B
\&




‘ More Property (2)

» COMPRESS

[ Removes specified character(s) from the source
© Example 1: Compressing Blanks

SAS Statements Results

SRR SR, |

a='"AB C D ’;
b=compress(a);
put b; ABCD

© Example 2: Compressing Lowercase Letters

SAS Statements Results

SRR, PR SN, S SR,

x="123-4567-8901 B 234-5678-9012 c’;

y=compress(x, "ABCD’,"1"); 123-4567-8901 234-5678-9012
put y;
B\ R SHEEmR A2 “ IR SESASE B

<4



‘ More Property (3)

© Example 3: Compressing Tab Characters

SAS Statements Results
ST |

x='1 2 3 4 5';

y=compress(Xx,,'s"); 12345

put y;

O Example 4: Keeping Characters in the List

SAS Statements Results
. |

x="Math A English B Physics A’;

y=compress (x, 'ABCD’, 'k’ ); ABA

put y;

By dtemsit spmmmnes
\&

R ST SAS S R 4mTE



‘ More Property (4)

» INDEX

[ Searches the source data for a pattern of characters

O Example

SAS Statements

Results

a='ABC.DEF (X=Y)';
b="X=Y";
x=index(a,b);

put x;

10

B\ it Shmemnas °
&

R ST SAS S R 4mTE



‘ More Property (5)

» LOWCASE
[ converts all uppercase letters to lowercase letters
O Example
SAS Statements Results

X="INTRODUCTION' ;
y=lowcase (x) ;
put vy; introduction

B _BR IS SEREER AR u RIS ESASTE R

eijing

&



‘ More Property (6)

» RIGHT
[ Right aligns a character expression
O Example
SAS Statements Results
S S, [

a='Due Date ';

b=right(a);

put a $10.; Due Date

Due Date

put b $10.;

By )\ st Symmmnas -
&

R ST SAS S R 4mTE



‘ More Property (7)

» SUBSTR

[ extracts a group of characters
O Example

SAS Statements

Results

date="06MAY98';
month=substr(date, 3,3);
year=substr(date,6,2);
put @1 month @5 year;

SN, PR,

MAY 98

B\ st SHEEERAS “
&

R ST SAS S R 4mTE



‘ More Property (8)

» TRANSLATE
[ Replaces specific characters in a character expression

O Example
SAS Statements Results
x=translate('XYZIW’','AB’, 'VW');
put x; XYZIB
B _BR TS SHEEER AL 47 PR BSESAS B

&



‘ More Property (9)

» UPCASE
[ returns the source data in uppercase.
O Example

SAS Statements Results

name=upcase('John B. Smith’);

put name; JOHN B. SMITH

-

B N dbstemssit Sasemas 48 ISERFSESAS B R

_ﬂ Beijing



' Numeric

' Contents

» [ntroduction to working with numeric variables
» [nput SAS data set for examples

» Calculating with numeric variables

» Comparing numeric variables

» Storing numeric variables efficiently

» More property

-

B _,; IR SRR AL “ RS ISASE R
\&



‘ Introduction to Working with Numeric Variables

(& Objectives

» In this section, you will learn the following:

[ how to perform arithmetic calculations in SAS using arithmetic
operators and the SAS functions ROUND and SUM

[ how to compare numeric variables using logical operators
[ how to store numeric variables efficiently when disk space is limited

-

) AT SR A 50 RS SAS S

ccccccccccccccccc



Input SAS Data Set for Examples

‘ A numeric variable is a variable whose values are numbers.

data populartours;
input country $1-11 Nights Aircost LandCost vender §;

datalines;
Japan 8 982 1020 Express A numeric variable is a variable
Greece 12 . 748 Express
Italy 8 852 508 Express whose values are numbers.
run,
Pr°;_z’l’lnthita: i°pUla’l: t°:rs’ In populartours,the variables Nights,
itle ‘Data Se o artours’ ; . .
popu v AirCost, and LandCost Contain
Run; .
numbers and are stored as numeric
Data Set populartours variables.
Data Set MYLIB.POPULARTOURS 1
Air Land
Obs Country Nights Cost Cost Vendor
1 Japan 8 982 1020 Express
2 Greece 12 - 748 Express .
3 New Zealand 16 1368 1539 Southsea
B 13) I SKEEERAS 5 IS RTSESASTE R A

&



‘ Calculating with Numeric Variables (1)

g Using arithmetic operators in assignment statements

» One way to perform calculations on numeric variables is to write
an assignment statement using arithmetic operators. Arithmetic
operators indicate addition, subtraction, multiplication, division, and
exponentiation (raising to a power).

Operators in Arithmetic Expressions

Operation Symbol Example
addition + X=V +Z
subtraction - X=V-Z
multiplication X=y %z
division / x=v/z
exponentiation ¥ X =y * g
B _B]\\* 3t§$%ﬁéﬁ1+'§&ﬁ%ﬂﬁé% 52 G R FTSAS SR IRtz

&



' Calculating with Numeric Variables (2)

# Example:

data newtour;
set populartours;
TotalCost=AirCost+LandCost;
PeakAir=(AirCost*1.10)+8;
NightCost=LandCost/Nights;

run;

proc print data=newtour;

var Country Nights AirCost LandCost TotalCost PeakAir NightCost;
title ‘Costs of Tours’;
run;
SAS Listing Output:
Costs for Tours 1
Air Land Total Peak Night
Obs Country Nights Cost Cost Cost Air Cost
1 Japan 8 982 1020 2002 1088.2 127.500
2 Greece 12 . 748 . . 62.333
3 New Zealand 16 1368 1539 2907 1512.8 96.188
B\ ecmsit SyEmmnas 59 RS ISASE R

&



‘ Calculating with Numeric Variables (3)

' Understanding numeric expressions and assignment

Statements

» Numeric expression in SAS share some features with mathematical
expressions:

[ When an expression contains more than one operator, the operations have the
same order of precedence as in a mathematical expression: exponentiation is
done first, then multiplication and division, and finally addition and subtraction.

[ When operators of equal precedence appear, the operations are performed
from left to right (except exponentiation, which is performed right to left).

[ Parentheses are used to group parts of an expression; as in mathematical
expressions, operations in parentheses are performed first.

» Note: The equal sign in an assignment statement does not perform the same
function as the equal sign in a mathematical equation. The sequence variable=in an
assignment statement defines the statement, and the variable must appear on the left
side of the equal sign. You cannot switch the positions of the result variable and the
expression as you can in a mathematical equation.

B 13} I SRR AR 54 ISR A IR
\&



‘ Calculating with Numeric Variables (4)

' Understanding how SAS handles missing values
» Why SAS Assigns Missing Values

What if an observation lacks a value for a particular numeric variable? For
example, in the data set MYLIB.POPULARTOURS, as shown in Output 7.2, the
observation for Greece has no value for the variable AirCost. To maintain the
rectangular structure of a SAS data set, SAS assigns a missing value to the
variable in that observation. A missing value indicates that no information is
present for the variable in that observation.

B ?} SR SRR AL 55 PR TS SAS A SRR
\&



‘ Calculating with Numeric Variables (5)

8 Rules for missing values

» The following rules describe missing values in several situations:

[ In data lines, a missing numeric value is represented by a period, for example,
O Greece 8 12 . 748 Express

O By default, SAS interprets a single period in a numeric field as a missing value. (If
the INPUT statement reads the value from particular columns, as in column input, a
field that contains only blanks also produces a missing value.)

[ In an expression, a missing numeric value is represented by a period, for
example,
O if AirCost= . then Status = 'Need air cost’;

[ In a comparison and in sorting, a missing numeric value is a lower value than
any other numeric value.

[ In procedure output, SAS by default represents a missing numeric value with a
period.
[ Some procedures eliminate missing values from their analyses; others do not.

[ Documentation for individual procedures describes how each procedure
handles missing values.

B P} I SRR AR 56 ISR A IR
\&



‘ Calculating with Numeric Variables (6)

8 Propagating missing values

» \When you use a missing value in an arithmetic expression, SAS
sets the result of the expression to missing. If you use that result in
another expression, the next result is also missing. In SAS, this
method of treating missing values is called propagation of missing
values. For example, Output 7.2 shows that in the data set
NEWTOUR, the values for TOTALCOST and PEAKAIR are also
missing in the observation for Greece.

Note: SAS enables you to distinguish between various kinds of numeric missing values.
See “Missing Values” section of SAS Language Reference: Concepts. The SAS
language contains 27 special missing values based on the letters A—Z and the
underscore ().

-

B 'BA LR ESIT SBUREEKS 57 IR RFFFTSAS R SRIE

=]

nnnnnnnnnnnnnnnnnnnnn



‘ Calculating Numbers Using SAS Functions (1)

' Rounding values

» In the example data that lists costs of the different tours (Output 7.1), some of the
tours have odd prices: $748 instead of $750, $1299 instead of $1300, and so on.
Rounded numbers, created by rounding the tour prices to the nearest $10, would be
easier to work with. Programming a rounding calculation with only the arithmetic
operators is a lengthy process. However, SAS contains around 280 built-in numeric
expressions called functions. You can use them in expressions just as you do the
arithmetic operators. For example, the following assignment statement rounds the
value of AirCost to the nearest $50:

[ RoundAir = round(AirCost,50);

» The following statement calculates the total cost of each tour, rounded to the
nearest $100:

[ TotalCostR = round(AirCost + LandCost,100);

B P} I SRR AR 58 ISR A IR
\&



‘ Calculating Numbers Using SAS Functions (2)

8 Calculating a cost when there are missing values

» As another example, the travel agent can calculate a total cost for the
tours based on all nonmissing costs. Therefore, when the airfare is missing
(as it is for Greece) the total cost represents the land cost, not a missing
value. (Of course, you must decide whether skipping missing values in a
particular calculation is a good idea.) The SUM function calculates the sum
of its arguments, ignoring missing values.

[ Example: SumCost = sum(AirCost,LandCost) ;

) AT SR A 59 RS SAS S

ccccccccccccccccc



‘ Calculating Numbers Using SAS Functions (3)

8 Combining functions

» |t is possible for you to combine functions. The ROUND function rounds
the quantity given in the first argument to the nearest unit given in the
second argument. The SUM function adds any number of arguments,
ignoring missing values. The calculation in the following assignment
statement rounds the sum of all nonmissing airfares and land costs to the
nearest $100 and assigns the value to RoundSum:;

[ Example: RoundSum=round (sum (AirCost,LandCost) ,100) ;

B ?} SR SRR AL 60 PR TS SAS A SRR
\&



' Calculating Numbers Using SAS Functions (4)

# Using the ROUND and SUM functions in the following DATA step
creates the data set MORETOUR:

data moretour;
set mylib.populartours;
RoundAir = round(AirCost,50) ;
TotalCostR = round (AirCost + LandCost,100);
CostSum = sum(AirCost,LandCost) ;
RoundSum = round(sum(AirCost,LandCost),100) ;
run;

proc print data=moretour;
var Country AirCost LandCost RoundAir TotalCostR CostSum RoundSum;
title 'Rounding and Summing Values’ ;

run;
B P} SR SRR AL 2 PR TS SAS A SRR

&



‘ Calculating Numbers Using SAS Functions (5)

SAS listing output:

Rounding and Summing Values 1

Alr Land Round Total Cost Round

Obs Country Cost Cost Air CostR Sum Sum
1 Japan 982 1020 1000 2000 2002 2000
2 Greece . 748 . . 748 700
3 New Zealand 1368 1539 1350 2900 2907 2900
B _BR TS SREEERAS Z PR TSESASE RS

&



‘ Comparing Numeric Variables (1)

¢ To compare two numeric variables, you can write an IF-THEN/ELSE
statement using logical operators. The following table lists some of the logical

operators you can use for variable comparisons.

Logical Operators

Symbol Mnemonic Equivalent Logical Operation

= eq equal

—-=, "=, ~= ne not equal to ( the =, "=, or ~=
symbol, depending on your keyboard)

> ot greater than

>= ge greater than or equal to

< 1t less than

<= le less than or equal to

B\ dbxemsiSHmmmias
&

63

R ST SAS S R 4mTE



‘ Comparing Numeric Variables (2)

data

toursunder2K;

set populartours;

TotalCost = AirCost + LandCost;
if TotalCost gt 2000 then delete;

run;
proc print data=toursunder2K;
var Country Nights AirCost Landcost TotalCost Vendor;
title ’'Tours $2000 or Less’;
run;,
Tours 52000 or Less 1
Air Land Total
Obs Country Nights Cost Cost Cost Vendor
1 Greece 12 . 748 . Express
2 Ireland 7 787 628 1415 Express
3 Venezuela 9 426 505 931 Mundial
B PR I SHEEER AR 64 IS ERTSESASE R

&



‘ Comparing Numeric Variables (3)

The TotalCost value for Greece is a missing value because any calculation
that includes a missing value results in a missing value. In a comparison,
missing numeric values are lower than any other numeric value.

If you need to compare a variable to more than one value, you can include

multiple comparisons in a condition. To eliminate tours with missing values, a
second comparison is added:

B P} I SRR AR s ISR A IR
\&



‘ Comparing Numeric Variables (4)

data toursunder2K2;

set mylib.populartours;

TotalCost = AirCost + LandCost;

if TotalCost gt 2000 or Totalcost = . then delete;

run;
proc print data=toursunder2K2?;

var Country Nights TotalCost Vendor;

title ’'Tours $2000 or Less’
run;
SAS listing output:

Tours 52000 or Less 1
Total
Obs Country Nights Cost Vendor
1 Ireland 7 1415 Express
2 Venezuela 9 931 Mundial
3 Italy 8 1450 Express
— -
EEA IEREMFIT SEREERAR 66 I FRFASTSAS R R 4mTE

&




‘ Storing Numeric Variables Efficiently (1)

¥ The data sets shown in this section are very small, but data sets are often
very large.If you have a large data set, you may need to think about the storage
space that yourdata set occupies. There are ways to save space when you
store numeric variables in SAS data sets.

By default, SAS uses 8 bytes of storage in a data set for each numeric variable.
Therefore, storing the variables for each observation in the earlier data set
MORETOUR requires 75 bytes:

56 bytes for numeric variables

(8 bytes per variable * 7 numeric variables)
11 bytes for Country

8 bytes for Vendor

75 bytes for all variables

B 13} SR SRR AL 67 PR TS SAS A SRR
\&



' Storing Numeric Variables Efficiently (2)

When numeric variables contain only integers (whole numbers), you can
often shorten them in the data set being created. For example, a length of 4
bytes accurately stores all integers up to at least 2,000,000.

A LENGTH statement contains the names of the variables followed by the
number of bytes to be used for their storage. For numeric variables, the
LENGTH statement affects only the data set being created; it does not affect

the program data vector. The
following program changes the storage space for all numeric variables that are

in the data set SHORTER:

B\ IEFe g SRR A 68 SRS SASE S

-B/;\ ccccccccccccccccc



' Storing Numeric Variables Efficiently (3)

' Example:

data shorter;
set mylib.populartours;
length Nights AirCost LandCost RoundAir TotalCostR Costsum RoundSum 4;
RoundAir = round(AirCost,50);
TotalCostR = round (AirCost + LandCost,100);
CostSum = sum(AirCost,LandCost) ;
RoundSum = round (sum(AirCost,LandCost),100) ;
run;

By calculating the storage space that is needed for the variables in each observation of SHORTER, you can
see how the LENGTH statement changes the amount of storage space used:

28 bytes for numeric variables

(4 bytes per variable in the LENGTH statement X 7 numeric variables)
11 bytes for Country

8 bytes for Vendor

47 bytes for all variables

B IR SRR AL 69 SRS SAS A e



‘ Storing Numeric Variables Efficiently (4)

Because of the 7 variables in SHORTER are shortened by the LENGTH
statement, the storage space for the variables in each observation is reduced

by almost half.

CAUTION:
Be careful in shortening the length of numeric variables if your variable

values are not integers. Fractional numbers lose precision permanently if they
are truncated. In general, use the LENGTH statement to truncate values only
when disk space is limited. Use the default length of 8 bytes to store variables

containing fractions.

-

Bp )\ dSemsiit SuiR e s 70 IS RTSESASTE R A

-/:\ ccccccccccccccccc



‘ More properties (1)

Numeric:

? Abs (x) Returns the absolute value
» Example: x=abs (-3) Result=3;

@ Vod (x1,x2) Returns the remainder from the division of the first argument by

the second argument, fuzzed to avoid most unexpected floating-point results
» Example: x1=mod (10,3); put x1 9.4; Result=l;

® ccii: Returns the smallest integer that is greater than or equal to the

argument, fuzzed to avoid unexpected floating-point results
» Example: varl=2.1; a=ceil(varl); put a; Result=3;

B PR SR SRR AL g PR TS SAS A SRR
\&



' More properties (2)

' Floor: Returns the largest integer that is less than or equal to the argument,
fuzzed to avoid unexpected floating-point results
» Example: varl=2.1; a=floor (varl); put a; Result=2;

' Int: Returns the integer value, fuzzed to avoid unexpected floating-point
results
» Example: varl=2.1; x=int(varl); put x; Result=2;

-

B PR SR SRR AL 72 PR TS SAS A SRR
\&



' Date and Time

' Contents

» [ntroduction to working with dates

» Understanding how SAS handles dates

» [nput file and SAS data set for examples
» Entering dates

» Displaying dates

» Using dates in calculations

» Using SAS date functions

» Comparing durations and SAS date values

-

B 'BA LR ESIT SBUREEKS & IR RFFFTSAS R SRIE

=]

nnnnnnnnnnnnnnnnnnnnnnn



' Introduction to Working with Dates

i Objective

» SAS stores dates as single, unigue numbers so that they can be
used in programs like any other numeric variable. In this section you
will learn how to do the following:

[ make SAS read dates in raw data files and store them as SAS date

values indicate which calendar form SAS should use to display SAS
date values

[ calculate with dates, that is, determine the number of days between
dates, find the day of the week on which a date falls, and use today’s
date in calculations

-

) AT SR A 7 RS SAS S

ccccccccccccccccc



‘ Understanding How SAS Handles Dates (1)

‘ How SAS stores date values

» Dates are written in many different ways. Some dates contain only
numbers, while others contain various combinations of numbers, letters, and
characters. For example, all the following forms represent the date July 26,
2000:

072600 26JULOO 002607

7/26/00 26JUL2000 July 26, 2000

» With so many different forms of dates, there must be some common
ground, a way to store dates and use them in calculations, regardless of how
dates are entered or displayed.

» The common ground that SAS uses to represent dates is called a SAS

date value. No matter which form you use to write a date, SAS can convert
and store that date as the number of days between January 1, 1960, and the
date that you enter.

B 13} I SKEEERAS 75 PR BSESAS B
\&



‘ Understanding How SAS Handles Dates (2)

# In SAS, every date is a unique number on a number line. Dates
before January 1,1960, are negative numbers; those after January 1,
1960, are positive. Because SAS date values are numeric variables,
you can sort them easily, determine time intervals, and use dates as
constants, as arguments in SAS functions, or in calculations.

Note: SAS date values are valid for dates based on the Gregorian calendar
from A.D. 1582 through A.D. 19,900. Use caution when working with historical
dates. Although the Gregorian calendar was used throughout most of Europe
from 1582, Great Britain and the American colonies did not adopt the calendar
until 1752.

-

B 13} I SKEEERAS 76 PR BSESAS B
\&



‘ Input File and SAS Data Set for Examples

g Example:

@® @
Japan 13may2000
Greece 170ct99
New Zealand 03£feb2001
Brazil 28feb2001
Venezuela 10nov00
Italy 25apr2001
USSR 03junl997
Australia 240ct98
Ireland 27aug2000

B\ it Shmemnas
&

12
16 | @O the name of country toured

8 @ the departure date

9 (3 the number of nights on the tour
8
14
12
7
-
77 s PRF 3T SAS B R 4R T2



‘ Entering Dates (1)

g Understanding informats for date values

» In order for SAS to read a value as a SAS date value, you must
give it a set of directions called an informat. By default, SAS reads
numeric variables with a standard numeric informat that does not
Include letters or special characters. When a field that contains data
does not match the standard patterns, you specify the appropriate
informat in the INPUT statement.

» Four commonly used informates are:
[ MMDDYYS8. reads dates written as mm/dd/yy.
[ MMDDYY10. reads dates written as mm/dd/yyyy.

[ DATE?Y. reads dates in the form ddMMMyy.
[ DATEO. reads dates in the form ddMMMyyyy.
B ?) I SHEEERAS 78 SR FISTSASTE R TE

&



‘ Entering Dates (2)

g Reading a date value

» T0 create a SAS data set for the Tradewinds Travel data, the
DATEDO . informat is used in the INPUT statement to read the variable
DepartureDate.

[ input Country $ 1-11 @13 DepartureDate date9. Nights;
» Using an informat in the INPUT statement is called formatted input.
The formatted input in this example contains the following items:

[ a pointer to indicate the column in which the value begins (@13)

[ the name of the variable to be read (DepartureDate)

[ the name of the informat to use (DATE9.)

444444444444444444

B ?) IS SRR A 79 SR RSESAS S RS



' Entering Dates (3)

8 Example:

libname mylib ' permanent-data-library’;
data mylib. tourdates;

infile ’'input-file’;

input Country $ 1-11 @13 DepartureDate date9. Nights;
run;

proc print data=mylib. tourdates;
title 'Tour Departure Dates as SAS Date Values’;
run;

B _,a SR SRR AL 60 PR TS SAS A SRR
\&



‘ Entering Dates (4)

SAS listing output

Tour Departure Dates as SAS Date Values 1
Departure
Obs Country Date Nights
1 Japan 14743 8
2 Greece 14534 12
3 New Zealand 15009 16
4 Brazil 15034 8
5 Venezuela 14924 9
6 Italy 15090 8
7 Russia 13668 14
8 Switzerland 14989 9
9 Australia 14176 12
10 Ireland 14849 7
B _BR IR SHERER AR J PR BSESAS B

&




' Entering Dates (5)

(& Using good programming practices to read dates

» \When reading dates, it is good programming practice to always
use the DATE9. or MMDDYY10. informats to be sure that the data is
read correctly.

NG g WSS BRI



' Entering Dates (6)

o Example:

data mylib. tourdates?;
infile ’'input-file’;
input Country $ 1-11 @13 DepartureDate date7. Nights;
run;
proc print data=mylib. tourdates’;
title 'Tour Departure Dates Using the DATE7. Informat’;
title2 ’'Displayed as Two-Digit Calendar Dates’
format DepartureDate date?.;
run;
proc print data=mylib. tourdates?;
title 'Tour Departure Dates Using the DATE7. Informat’;
title2 ’'Displayed as Four-Digit Calendar Dates’
format DepartureDate date9.;

run,

B IR SRR AL 83 SRS SAS A e
-/\ Bei Biometric Association



‘ Entering Dates (7)

Departure Departure
Obs Country Date Nig%;s Obs Country Date Nights
1 Japan 13MAY20 0 1 Japan 13MAY1920 0
2 Greece 170CT99 12 2 Greece 170CT9999 12
3 New Zealand O03FEB20 1 3 New Zealand 03FEBR1920 1
4 Brazil 28FEB20 1 4 Brazil 28FEB1920 1
5 Venezuela 10NOVO0O 9 5 Venezuela 10NOV2000 9
6 Italy 25APR20 1 6 Italy 25APR1920 1
7 USSR 14JAN20 1 7 USSR 14JAN1920 14
8 Australia 240CT98 12 8 Australia 240CT1998 12
9 Ireland 27AUG20 0 9 Ireland 27AUG1920 7

(D SAS stopped reading the date after seven characters; it read the first two digits, the century, and not the complete
four-digit year.

2 To read the data for the next variable, SAS moved the pointer one column and read the next two numeric characters
(the years 00, 01, and 97) as the value for the variable Nights. The data for Nights in the input file was ignored.

(3 When the dates were formatted for four-digit calendar dates, SAS used the YEARCUTOFF= 1920 system option to
determine the century for the two-digit year. What was originally 1997 in observation 7 became 2019, and what
was originally 2000 and 2001 in observations 1, 3, 4, 6, 8, and 10 became 1920.

B\ dosecimsit SHimsmRas o IGRSASE BT
&



' Entering Dates (8)

(& Using dates as constants

» To write a SAS date constant, enclose a date in quotation marks in
the standard SAS form ddMMMyyyy and immediately follow the final
guotation mark with the letter D. The D suffix tells SAS to convert the
calendar date to a SAS date value.

[ Example:
if Country = ’'Switzerland’ then DepartureDate = ’'21jan2001’d;
-/\\ IEREMSH SHREERES 85 G RFFTSASE R 4R T



' Displaying Dates (1)

(& Understanding how SAS displays values

» SAS displays all data values with a set of directions called a
format. By default, SAS uses a standard numeric format with no

commas, letters, or other special notation to display the values of
numeric variables.

) AT SR A 86 RS SAS S

ccccccccccccccccc



' Displaying Dates (2)

. Formatting a date value

» The format can be used by specifying the variable and the format name in a FORMAT statement.
» The FORMAT contains the following items:

[ The name of the variable

[ The name of the format to be used

» Placing a FORMAT statement in a PROC step associates the format with the variable only for

step. To associate a format with a variable permanently, use the FORMAT statement in a DATA
step.

» Example (1):

proc print data=mylib. tourdates;
title ’'Departure Dates in Two-Digit Calendar Format’;
format DepartureDate mmddyy8. ;

run;

proc print data=mylib. tourdates;
title ’'Departure Dates in Four-Digit Calendar Format’;
format DepartureDate mmddyylO0. ;

run;

B 13} SR SRR AL o7 PR TS SAS A SRR
\&



‘ Displaying Dates (3)

Departure Departure
Obs Country Date Nights Obs Country Date Nights
1 Japan 13MAY1920 8 1 Japan 13MAY1920 8
2 Greece 170CT9999 12 2 Greece 170CT9999 12
3 New Zealand O03FEB1920 16 3 New Zealand O03FEB1920 16
4 Brazil 28FEB1920 8 4 Brazil 28FEB1920 8
5 Venezuela 10NOV2000 9 5 Venezuela 10NOV2000 9
6 Italy 25APR1920 8 6 Italy 25APR1920 8
7 USSR 14JAN1920 14 7 USSR 14JAN1920 14
8 Australia 240CT1998 12 8 Australia 240CT1998 12
9 Ireland 27AUG1920 7 9 Ireland 27AUG1920 7
B\ e ShmEmRas HRFSESASTE TR

&



' Displaying Dates (4)

' Example (2)

data mylib. fmttourdate;
set mylib. tourdates;
format DepartureDate date9.;
run;
proc contents data=mylib.fmttourdate nodetails;

run,

B _,% SR SRR AL o9 PR TS SAS A SRR
\&



‘ Displaying Dates (5)

Output

The SAS System 1

The CONTENTS Procedure

Data Set Name: MYLIEBE.FMTTOURDATE Observations: 10
Member Tvyvpe: DATRA Variables: 3
Engines: V8 Indexes: (o]
Created: 14:15 Friday, November 19, 1999 Observation Length: 32
Last Modified: 14:15 Friday, MNovember 19, 1999 Deleted Obserwvations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

————— Engine/Host Dependent Information—————

Data Set Page Size: 8192
Number of Data Set Pages: 1

First Data Page: 1

Max Obs per Page: 254

Obs in First Data Page: 10

Number of Data Set Repairs: 0

filename : /SAS DATA LIBRARY/fmttourdate.sas7bdat
Release Created: 8.0001M0O
Host Created: HP-UX
Inode Number: 1498874206
Access Permission: rw—r——Ir——
Owner Name: user0l
File Size (byvtes): 16384

————=—Alphabetic List of Variables and Attributes———-—-—

# Variable Type Len Pos Format
1 Country Char 11 16
2 —DepartureDate Num 8 o DATET >
3 MNights T g 8

eijing Biometric A

B _B/\\’ I SRR AL z WFR R SESASIE R T



‘ Displaying Dates (6)

g Changing formats temporarily

» \When preparing a report that requires the date in a different format,
the permanent format can be overrode by using a FORMAT
statement in a proc step.

Output:
[ Example:
Departure
i i Obs Country Date Nights
proc print data=mylib. tourdates;
i 1 Japan MAY 13,1920 8
title ’'Tour Departure Dates’;
format DepartureDate worddatel8.; 2 Greece ocT 17,1999 12
3 New Zealand FEB 3,1920 16
run;
4 Brazil FEB 28,1920 8
5 Venezuela NOVv 10,2000 9
Note: The format DATEDO. is still permanently assigned to 6 Italy APR 25,1920 8
DepartureDate. Calendar dates in the remaining examples 7 USSR JAN 14,1920 14
: . 8 Australi OCT 24,1998 12
are in the form ddMMMyyyy unless a FORMAT statement is ustratia
. ) 9 Ireland AUG 27,1920 7
included in the PROC PRINT step.
B }3} IS SEREER A d AR
) eijing ometric Association



' Using Dates in Calculations (1)

(& Sorting dates

» Since SAS date values are numeric values, they can be sorted
and used in calculations.

[ Example:
proc sort data=mylib.fmttourdate out=sortdate;
by DepartureDate;
run;
proc print data=sortdate;
var DepartureDate Country Nights;
title 'Departure Dates Listed in Chronological Order’;

run,

B 13} SR SRR AL 92 PR TS SAS A SRR
\&



‘ Using Dates in Calculations (2)

g Creating new date variables

» In the previous example, the return date for each tour can be
calculated for each tour, To start, create a new variable by adding
the number of nights to the departure date, as follows:

[ Example:
Departure
Obs Country Date Nights Return
data home; 1 Japan 14743 8 21MAY2000
set mylib. tourdates; 2 Greece 14534 12 290CT1999
Return = DepartureDate + Nights; 3 New Zealand 15009 16 19FEB2001
format Return date9.; 4 Brazil 15034 8 08MAR2001
run; 5 Venezuela 14924 9 19NOV2000
proc print data=home; 6 Italy 15090 8 03MAY2001
title 'Dates of Departure and Return’; | 8 Australia 14176 12 05NOV1998
run; 9 Ireland 14849 7 03SEP2000

-

B\ st Sumemnas ” WG SESAS A
&



‘ Using SAS Date Functions (1)

g Finding the day of the week

» Constructing a data set with these statements produces a list of
payment due dates. The following program includes these
statements and assigns the format WEEKDATEZ29. to the new

variable DueDate: Obs Country  DueDate
data pay; 1 Japan Thursday, April 13,2000
set mylib. tourdates; 2 Greece Friday, September 17,1999
DueDate = DepartureDate - 30; 3 New Zealand Thursday, January 4,2001
if Weekday (DueDate) = 1 then 4 Brazil Monday, January 29,2001
DueDate = DueDate - 1; 5 Venezuela Wednesday, Octoberll,2000
format DueDate weekdate29.; 6  Italy Monday, March 26, 2001
run: 8 Australia Thursday, September 24,1998
4
proc print data—pay . 9 Ireland Friday, July 28,2000
- ’
var Country DueDate;
title 'Date and Day of Week Payment Is Due’;
run;
B ?R TS SREEERAS o4 PR TSESASE RS
~ eijing ometric Association

&



‘ Using SAS Date Functions (2)

(& Calculating a date from today

» The TODAY function produces a SAS date value that corresponds
to the date when the program is run. The following statements
determine which tours depart at least 90 days from today’s date but
not more than 180 days from now:

B 0\

B/
<4

data ads;
set mylib. tourdates;
Now = today() ;
if Now + 90 <= DepartureDate <= Now + 180;
run;
proc print data=ads;
title 'Tours Departing between 90 and 180 Days from Today’ ;
format DepartureDate Now date9.;

run,
Output:
Departure
Obs Country Date Nights Now .
1 Japan 13May2000 8 23NOV1999
IbREmg S EEER AR % ISR SESAS B R RE
eijing Ass

ometric Associa tion



‘ Comparing Durations and SAS Date Values (1)

8 Examplel:
Output:

/* Calculating a duration in days */
data ttage;

Start = '08feb82’'d; 1 08FEB1982 23NOV1999 6497

RightNow = today() ;

Age = RightNow - Start;

format Start RightNow date9.;
run;
proc print data=ttage;

title 'Age of Tradewinds Travel’;
run;

Obs Start RightNow Age

Note: The value of Age is 6497, a number that looks like an unformatted SAS date value.
However, Age is actually the difference between February 8, 1982, and November 23,1999,
and represents a duration in days, not a SAS date value. To make the value of Age more
understandable, divide the number of days by 365 (more precisely, 365.25) to produce a
duration in years. The following DATA step calculates the age of Tradewinds Travel in years:

Bp )\ dSemsiit SuiR e s 9% RS SAS S

-/‘\ ccccccccccccccccc



‘ Comparing Durations and SAS Date Values (2)

8 Example2:

/* Calculating a duration in years */
data ttage2;
Start = '08feb82’d;
RightNow = today() ;
AgeInDays = RightNow - Start;
AgeInYears = AgelInDays / 365.25;
format AgeInYears 4.1 Start RightNow date9.;
run;
proc print data=ttage2;
title 'Age in Years of Tradewinds Travel’;

run,
Output:
Age In Age In
Obs Start Rightnow Days Years
1 08FEB1982 23NOV1999 6497 17.8

-

B PR SR SRR AL 97 PR TS SAS A SRR
\&



' Statistics

' Contents

» RANGE function

» RMS function

» SKEWNESS function
» STD function

» STDERR function

» SUM function

» USS function

» VAR function

-

B\ dtsrekimsit SEmEEE AL & MR TSESAS



‘ RANGE Function

' Detalls

» The RANGE function returns the difference between the largest
and the smallest of the nonmissing arguments.

Syntax

» RANGE (argument,argument,...)

[ Argument is numeric. At least one nonmissing argument is required.
Otherwise, the function returns a missing value. The argument list can
consist of a variable list, which is preceded by OF

‘ Exam P |@ sAS Statements Results

x0=range(.,.);

xl=range(-2,6,3); 8

x2=range(2,6,3,.); 4

x3=range(1,6,3,1); 5

x4=range (of x1-x3); 4 -
Bpa NG e 99 IS PR FRSESAS B SR



' RMS Function (1)

‘ Detalls

» The root mean square is the square root of the arithmetic mean of
the squares of the values. If all the arguments are missing values,
then the result is a missing value. Otherwise, the result is the root
mean square of the non-missing values.

» Letn be the number of arguments with non-missing values, and let

be ©1.w2,-...rn the values of those arguments. The root mean square
IS
| i i
{I.J'Ef.::— + rs
\"II T
) IREMSI SRIEEER AR 100 IEBRFISTSASES e



‘ RMS Function (2)

' Syntax

» RMS (argument<,argument,...>)
[ Argument is a non-negative numeric constant, variable, or expression.
[ Tip: The argument list can consist of a variable list, which is preceded

by OF.
g Example
SAS Statements Results
Xxl=rms{(1,7); 5
x2=rms(.,1,5,11); 7
x3=rms (of x1-x2); 6.0827625303
B _BR IERENS SHIREER AR 1o PR FFSESAS B e

&



‘ SKEWNESS Function

' Syntax

» SKEWNESS (argument,argument,argument, ...)

[ Argument is numeric. At least three nonmissing arguments are
required. Otherwise, the function returns a missing value. The
argument list may consist of a variable list, which is preceded by OF.

¢ Example
SAS Statements Results
xl=skewness(0,1,1); -1.732050808
x2=skewness (2,4,6,3,1); 0.5901286564
x3=skewness(2,0,0); 1.7320508076
x4=skewness(of x1-x3); -0.953097714
B _BR I SRR AR 102 PR BSESAS B

&



‘ STD Function

' Syntax

» STD (argument,argument,...)

[ Argument is numeric. At least two nonmissing arguments are required.
Otherwise, the function returns a missing value. The argument list can

consist of a variable list, which is preceded by OF.

g Examples

SAS Statements

Besults

x1=std(2,6);
x2=std(2,6,.);
x3=std(2,4,6,3,1);

x4=std(of x1-x3);

2.8284271247
2.8284271427
1.9235384062

0.5224377453

By fiemsit spemmnes
\&

-

R ST SAS S R 4mTE



‘ STDERR Function

' Syntax

» STDERR (argument,argument, ...)

[ Argument is numeric. At least two nonmissing arguments are required.
Otherwise, the function returns a missing value. The argument list can
consist of a variable list, which is preceded by OF.

‘ Example
SAS Statements Results
xl=stderr(2,6); 2
x2=stderr(2,6,.); 2
x3=stderr(2,4,6,3,1); 0.8602325267
x4=stderr(of x1-x3); 0.3799224911
B _B/X\* IS SEREER AR 104 K ERRASESASES LR

&



‘ SUM Function (1)

' Syntax

» SUM (argument,argument, ...)

[ Argument is numeric. If all the arguments have missing values, the
result is a missing value. The argument list can consist of a variable
list, which is preceded by OF.

B\ dosecimsit SHimsmRas 105 B AR SESAS B R
\&



‘ SUM Function (2)

g Example

SAS Statements Results
x1=sum(4,9,3,8); 24
x2=sum(4,9,3,8,.); 24
x1=9;

x2=39;

x3=sumof x1-x2); 48

x1=5; x2=6; X3=4; x4=9;
y1=34; y2=12; y3=74; y4=39;

result=sum({of xl-x4, of yl-y5); 183
x1=55;
x2=35;
X3=6;
x4=sum(of xl-x3, 5); 101
x1=T7;
x2=7;
x5=sum(x1-x2); 0
yv1=20;
y2=30; .
x6=sumiof y:); 50
N e IaASASE BT

&



‘ USS Function

' Syntax

» USS (argument-1<,argument-n>)

[ Argument is numeric. At least one nonmissing argument is required.
Otherwise, the function returns a missing value. If you have more than

one argument, the argument list can consist of a variable list, which is
preceded by OF.

g Example
SAS Statements Results
xl=uss(4,2,3.5,6); 68.25
x2=uss(4,2,3.5,6,.); 68.25
x3=uss(of x1-x2); 9316.125
B Q IR SHEEERAS 107 PR RSESAS B AR

&



‘ VAR Function

' Syntax

» VAR (argument,argument, ...)

[ Argument is numeric. At least two nonmissing arguments are required.
Otherwise, the function returns a missing value. The argument list can
consist of a variable list, which is preceded by OF.

‘ Example
SAS Statements Results
Xxl=var(4,2,3.5,6); 2.7291666667
x2=var(4,6,.); 2
x3=var(of x1-x2); 0.2658420139
B _B} I SHEEER AR 108 I FSTSAS A T

&



' Probability

' Contents

» POISSON function

» PROBBETA function
» PROBBNML function
» PROBBNRM function
» PROBCHI function

» PROBF function

» PROBGAM function
» PROBIT function

» PROBNORM function

-

B\ dtsrekimsit SEmEEE AL MR TSESAS



‘ POISSON Function

' Detalls

» The POISSON function returns the probability that an observation
from a Poisson distribution, with mean m, is less than or equal to n.
To compute the probability that an observation is equal to a given
value, n, compute the difference of two probabilities from the Poisson

distribution for n and n—.

' Syntax

» POISSON (m,n)
[ M is a numeric mean parameter. Range: m = 0
[ N is an integer random variable. Range: n = 0

g Example
SAS Statements Results
x=poisson(l,2); 0.9196986029 .
B N dbstemssit Sasemas 110 RIS ESASTE R

B/
<4



‘ PROBBETA Function

' Detalls

» The PROBBETA function returns the probability that an

observation from a beta distribution, with shape parameters a and b,
Is less than or equal to x.

' Syntax
» PROBBETA (x,a,b)
[ X is a numeric random variable. Range: 0 < x < 1

[ Ais a numeric shape parameter. Range: a > 0
[ B is a numeric shape parameter. Range: b > 0

g Example
SAS Statements Results
x=probbeta(.2,3,4); 0.09888
B\ ecmsit SyEmmnas 1 PR TS ISASTE R

&



‘ PROBBNML Function

' Detalils

» The PROBBNML function returns the probability that an observation from
a binomial distribution, with probability of success p, number of trials n, and
number of successes m, is less than or equal to m. To compute the
probability that an observation is equal to a given value m, compute the
difference of two probabilities from the binomial distribution for m and m-1
successes.

' Syntax

» PROBBNML (p,n,m)

[ Pis anumeric probability of success parameter. RANGE: 0 < p £ 1
[ Nis aninteger number of independent Bernoulli trials parameter. RANGE:

n>0
[ Mis an integer number of successes random variable. RANGE: 0 € m £n
# Example
SAS Statements Results l
x=probbnml (0.5, 10, 4); 0.376953125
B }3} bt SHIREERAS 112 MR AT ST SAS T R e

&



‘ PROBBNRM Function (1)

‘ Detalls

» The PROBBNRM function returns the probability that an
observation (X, Y) from a standardized bivariate normal distribution
with mean 0, variance 1, and a correlation coefficient r, is less than
or equal to (x, y). That is, it returns the probability that X<x and Y<y.
The following equation describes the PROBBNRM function, where u
and v represent the random variables x and y, respectively:

PROBBNRM (v, g, 1) = dv du

B N dbseemssit SHmeme s 13 RS SAS S



‘ PROBBNRM Function (2)

' Syntax
» PROBBNRM (X, vy, 1)
» X IS a numeric variable.
» Y IS a numeric variable.
» R is a numeric correlation coefficient. Range: -1 <r <1

g Example
SAS Statements Result
p=probbnrm{.4, -.3, .2);
put p; 0.2783183345
B _BR bR SHIEEER AL 14 PR FFSESAS B e

&



‘ PROBCHI Function

. Detalls

» The PROBCHI function returns the probability that an observation
from a chi-square distribution, with degrees of freedom df and
noncentrality parameter nc, is less than or equal to x. This function
accepts a noninteger degrees of freedom parameter df. If the
optional parameter nc is not specified or has the value 0, the value
returned is from the central chi-square distribution.

. Syntax
» PROBCHI (x,df<,nc>)
[ X is a numeric random variable. Range: x = 0

[ Df is a numeric degrees of freedom parameter. Range: df > 0
[ Nc is an optional numeric noncentrality parameter.Range: nc = 0

8 Example:

SAS Statements Results

x=probchi (11.264,11); 0.5785813293 .
NG IR SASE AT

&



‘ PROBF Function (1)

‘ Detalls

» The PROBF function returns the probability that an observation
from an F distribution, with numerator degrees of freedom ndf,
denominator degrees of freedom ddf, and noncentrality parameter nc,
IS less than or equal to x. The PROBF function accepts noninteger
degrees of freedom parameters ndf and ddf. If the optional parameter
nc is not specified or has the value 0, the value returned is from the
central F distribution.

» The significance level for an F test statistic is given by
p=1-probf(x,ndf,ddf);

By )\ st Symmmnas ISR SEAST BT



‘ PROBF Function (2)

' Syntax

» PROBF (x,ndf,ddf<,nc>)
[ X is a numeric random variable. Range: x = 0
[ Ndf is a numeric numerator degrees of freedom parameter. Range:

ndf >0
[ Ddf is a numeric denominator degrees of freedom parameter. Range:
ddf >0
[ Nc is an optional numeric noncentrality parameter. Range: nc = 0
g Example
SAS Statements Results
x=probf(3.32,2,3); 0.8263933602
B BA IbSEngIt SR EER AR 17 HS PR RS SASES R RS



‘ PROBGAM Function

' Detalls

» The PROBGAM function returns the probability that an
observation from a gamma distribution, with shape parameter a, is
less than or equal to x.

' Syntax

» PROBGAM (x,a)
[ X is a numeric random variable. Range: x = 0
[ Ais a numeric shape parameter. Range: a > 0

g Example
SAS Statements Results
x=probgam(1,3); 0.0803013971 .
B _BR RN SRR AR 118 IS BRATSESAS A RATE

&



' PROBIT Function (1)

‘ Detalls

» The PROBIT function returns the pth quantile from the standard
normal distribution. The probability that an observation from the
standard normal distribution is less than or equal to the returned
quantile is p.

® cruTiON:

» The result could be truncated to lie between -8.222 and 7.941.
» Note: PROBIT is the inverse of the PROBNORM function.

B P} I SRR AR 119 ISR A IR
\&



‘ PROBIT Function (2)

' Syntax
» PROBIT (p)
[ P is a numeric probability. Range: 0 <p <1
g Example
SAS Statements Results
x=probit (.025); -1.959963985
x=probit(l.e-7); -5.199337582
B\ it Shmemnas

&

-

R ST SAS S R 4mTE



‘ PROBNORM Function

' Detalls

» The PROBNORM function returns the probability that an

observation from the standard normal distribution is less than or
equal to x.

Syntax

» PROBNORM (x)
[ X is a numeric random variable.

g Example
SAS Statements Results
x=probnorm(1l.96); 0.9750021049
B\ ecmsit SyEmmnas 12 PR TS ISASTE R

&



' Others

‘ Contents

» Function LARGEST, SMALLEST, ORDINAL
» Function LENGTH, LENGTHC, LENGTHN
» Function CAT, CATS, CATT, CATX

» Function SCAN, SCANQ

» Function INDEX, INDEXC, INDEXW

» Function FIND, FINDC

» Function COUNT, COUNTC

-

B\ it Shmemnas IR SASE AT



. Function LARGEST, SMALLEST, ORDINAL

» Example
largest num=LARGEST (k, 456, 789, .Q, 123)
smallest num = SMALLEST (k, 456, 789, .Q, 123);
ordinal_num = ORDINAL (k, 456, 789, .Q, 123);

‘ Function LARGEST SMALLEST ORDINAL

LARGEST SMALLEST ORDINAL
Function Function Function

1 789 123 Q

2 456 456 123
3 123 789 456
4 789

-
G RS SAS S i 2




‘ Function LENGTH, LENGTHC, LENGTHN

# LENGTH: returns the length of a non-blank character string,
excluding trailing blanks, and returns 1 for a blank character string

# LENGTHC: returns the length of a character string, including trailing
blanks.

# LENGTHN: returns the length of a non-blank character string,
excluding trailing blanks, and returns 0 for a blank character string.

a x=length(a) | y=lengthc(a) | z=lengthn(a)
‘Baboons Eat Bananas ’ 19 20 19
’ 1 1 0
-
B _BR RS SHEEER AR 124 S PREISTSASEE R AAE

&



‘ Function CAT, CATS, CATT, CATX

0 CAT: concatenates character strings without removing leading or trailing blanks.
CATS: concatenates character strings and removes leading and trailing blanks.
CATT: concatenates character strings and removes trailing blanks only.

CATX: concatenates character strings, removes leading and trailing blanks,

and inserts separators.

. Example

» exlotl1=CAT(bhnuml1x,bhnum2x,bhnum3x);

» exlot2=CATS(bhnuml1x,bhnum2x,bhnum3x);
» eXxlot3=CATT(bhnuml1x,bhnum2x,bhnum3x);

» exlotd=CATX(" ',bhnumlx,bhnum2x,bhnum3x);

| Bhrurn = | Bhiwirn2x | Bhrwrn 3=
PE-00 FE-0O0 W20a1
PE-00 FE-0O0 W20a1

| exlot | exlots exlots exlotd |
FE-00 P&-O0 w2031  PE-OOPE-0O0WZ03 FE-00 PE-O0 2031  PE-00 PE-O0 W20
FE-00 PE-O0 w2031  PE-OOPE-00WZ031 FE-00 PE-O0 w2031  PE-00 PB-OO W20 .

B 2 dbEetmsit SHESERAS 125 s R SESASE R RS
% B e ing Biometric Association

el

&



‘ Function SCAN, SCANQ

@ SCAN: Selects a given word from a character expression
@ SCANQ: Returns the nth word from a character expression,
ignoring delimiters that are enclosed in quotation marks

@ Example:
» allnames='Eleanor "Billie Holiday" Fagan’;

i 1 2 3 4

scan(allnames,i," ") | Eleanor "Billie Holiday" | Fagan

scang(allnames,i," ") | Eleanor | "Billie Holiday" | Fagan

-

B _B/\\* RN SRR EERAS 126 s FRRRSESAS B R AR
\&



‘ Function INDEX, INDEXC, INDEXW

0 INDEX: Searches a character expression for a string of characters
o INDEXC: Searches a character expression for specific characters
# INDEXW: Searches a character expression for a specified string as
a word

b Example: xyz="babc,abc@abc";

Syntax statement result XyZz
INDEX(source,excerpt) index(x, "abc"); 2 babc,abc@abc
INDEXC(source,excerpt-1<,... excerpt-n>) | indexc(x,"ac","b"); 1 babc,abc@abc
INDEXW(source, excerpt<,delimiter>) indexw(x,"abc","@"); 10 | babc,abc@abc

indexw(x,"abc","@,"); 6 babc,abc@abc
-
B N dbstemssit Sasemas 127 ISR A IR

_/‘\ Beijing



g FIND function
» Searches for a specific substring of characters within a character string that you

‘ Function FIND, FINDC (1)

specify
» Modifiers: i, t
g Example:
» xyz="This is a thistle? Yes, this is a thistle.’;
» a=‘this_’
b | c | statement search for | result Xyz
find(xyz,a) this_ 25 | ‘This is a thistle? Yes, this is a thistle.’
T find(xyz,a,b) | this_,This_ 1 ‘This is a thistle? Yes, this is a thistle.’
1 find(xyz,a,b) | this 11 | ‘This is a thistle? Yes, this is a thistle.’
it find(xyz,a,b) | this,This 1 ‘“This is a thistle? Yes, this is a thistle.’
i’ | 30 | find(xyz,a,b,c) | this_,This_| O ‘“This is a thistle? Yes, this is a thistle.’
‘it | 30 | find(xyz,a,b,c) | this, This 35 | ‘Thisis a thistle? Yes, this is a thistle.’
-
Bp )\ st Suemmnas 128 ISERFSESAS B R

B/
<4




0 Example:

® ~inDC function

» Searches for specific characters that either appear or do not appear within a
character string that you specify

» Modifiers: i, t, v

‘ Function FIND, FINDC (2)

» Xyz='Baboons Eat Bananas ’;
» a=‘ab’

C statement search for | result Xyz
findc(xyz,a) a,b 2 ‘Baboons_Eat_Bananas '’
findc(xyz,a,b) | (@,b) 1 ‘Baboons_Eat_Bananas '’
findc(xyz,a,b) | *(a,b,A,B) 4 ‘Baboons_Eat Bananas '’

13 | findc(xyz,a,b,c) | M(a,b) 13 | ‘Baboons_Eat Bananas '’

13 | findc(xyz,a,b,c) | M(a,b,A,B) 15 | ‘Baboons_Eat Bananas '’

i el bl

129

R ST SAS S R 4mTE




‘ COUNT function

» Counts the number of times that a specific substring of characters appears
within a character string that you specify

» Modifiers: i, t

‘ Function COUNT, COUNTC (1)

0 Example:

» xyz="This is a thistle? Yes, this is a thistle.’;

» a='this_’
statement search for | result Xyz
count(xyz,a) this_ 1 ‘This is a thistle? Yes, this is a thistle.’
count(xyz,a,b) | this_,This_ 2 ‘This is a thistle? Yes, this is a thistle.’
count(xyz,a,b) | this 3 ‘This is a thistle? Yes, this is a thistle.’
count(xyz,a,b) | this,This 4 ‘This is a thistle? Yes, this is a thistle.’

S e bl

jing

130

R ST SAS S R 4mTE



. COUNTC function

» Counts the number of specific characters that either appear or do not
appear within a character string that you specify

» Modifiers: i, t, v

‘ Function COUNT, COUNTC (2)

o Example:
» Xyz='Baboons Eat Bananas ’;
» a=‘ab’
statement search for | result XyZz
countc(xyz,a) a,b 6 ‘Baboons_Eat Bananas__
countc(xyz,a,b) | M(a,b) 14 | ‘Baboons_Eat Bananas
countc(xyz,a,b) | *(a,b,A,B) | 11 ‘Baboons_Eat_Bananaqf_\j

SR e e

131

R ST SAS S R 4mTE



